BackgroundObesity caused by the overconsumption of energy-dense foods high in fat and sugar has contributed to the growing prevalence of type 2 diabetes. Betaine, found in food or supplements, has been found to lower blood glucose concentrations, but its exact mechanism of action is not well understood. ObjectivesA comprehensive evaluation of the potential mechanisms by which betaine supplementation improves glucose metabolism. MethodsHyperglycemic mice were fed betaine to measure the indexes of glucose metabolism in the liver and muscle. To explore the mechanism behind the regulation of betaine on glucose metabolism, Ribonucleic Acid-Seq was used to analyze the livers of the mice. In vitro, HepG2 and C2C12 cells were treated with betaine to more comprehensively evaluate the effect of betaine on glucose metabolism. ResultsBetaine was added to the drinking water of high-fat diet-induced mice, and it was found to reduce blood glucose concentrations and liver triglyceride concentrations without affecting body weight, confirming its hypoglycemic effect. To investigate the specific mechanism underlying its hypoglycemic effect, protein-protein interaction enrichment analysis of the liver revealed key nodes associated with glucose metabolism, including cytochrome P450 family activity, insulin sensitivity, glucose homeostasis, and triglyceride concentrations. The Kyoto Encyclopedia of Genes and Genomes and gene ontogeny enrichment analyses showed significant enrichment of the Notch signaling pathway. These results provided bioinformatic evidence for specific pathways through which betaine regulates glucose metabolism. Key enzyme activities involved in glucose uptake, glycogen synthesis, and glycogenolysis pathways of the liver and muscle were measured, and improvements were observed in these pathways. ConclusionsThis study provides new insight into the mechanisms by which betaine improves glucose metabolism in the liver and muscle and supports its potential as a drug for the treatment of metabolic disorders related to glucose.
Read full abstract