In this article we present a synthesis of recent information concerning the fate of lactate in skeletal muscle. This is important since lactate is continuously produced by skeletal muscle at rest and at all levels of exercise. Therefore, the disposal of lactate as an 'intermediary' metabolite is discussed. The two primary fates of lactate in skeletal muscle are (1) oxidation and (2) glycogen synthesis (glyconeogenesis). From recent evidence it seems relatively clear that glycogen formation in muscle is primarily dependent on glucose, although in fast twitch muscles a considerable proportion of lactate can account for muscle glycogen formation, especially immediately after exercise when circulating lactate levels are elevated. Exactly how lactate is converted to glycogen is not known yet, but an extramitochondrial pathway that is divergent from the hepatic gluconeogenic pathway seems likely. Oxidation of lactate is quantitatively the most important means of disposing of lactate, whether in exercising or nonexercising muscle. The lactate gradient between muscle and blood may be an important factor dictating whether lactate is taken up or released by muscle, independent of whether the muscle is active or not. Finally a novel role for epinephrine is considered that may be important for the mitochondrial oxidation of lactate.
Read full abstract