Immune checkpoint blockade (ICB) therapies have demonstrated remarkable clinical success in treating cancer. However, their objective response rate remains suboptimal because current therapies rely on limited immune checkpoints that fail to cover the multiple immune evasion pathways of cancer. To explore potential ICB strategies, we propose a glycoimmune checkpoint elimination (glycoICE) therapy based on targeted editing of sialoglycans on the tumor cell surface using an aptamer-enzyme chimera (ApEC). The ApEC can be readily generated via a one-step bioorthogonal procedure, allowing for large-scale and uniform production. It specifically targets and desialylates cancer cells, disrupting the sialoglycan-Siglec axis to activate immune cells and enhance immunotherapy efficacy, while its high tumor selectivity minimizes side effects from indiscriminate desialylation of normal tissues. Furthermore, the ApEC has the potential to be a versatile platform for specific editing of sialoglycans in different tumor models by adjusting the aptamer sequences to target specific protein markers. This research not only introduces a novel molecular tool for the effective editing of sialoglycans in complex environments, but also provides valuable insights for advancing DNA-based drugs towards in vivo and clinical applications.
Read full abstract