This study was planned to determine the colistin-resistant (CR) gene distribution among two species of gram-negative bacteria, Pseudomonas aeruginosa and Klebsiella pneumoniae. In total, 50 isolates of K. pneumoniae (14 isolates, 28%) and P. aeruginosa (36 isolates, 72%) were isolated between August 2023 and October 2023 from clinical wound samples at Jinnah Hospital and Lahore General Hospital Lahore, Pakistan. To determine the resistance genes linked to CR and assess antimicrobial susceptibility, all isolates were kept at -80°C in 15% glycerol broth. Using the right primer sets, a polymerase chain reaction (PCR) was utilized to identify the CR-associated mcr-1 gene of the gramnegative isolates. Out of 50, 40 isolates (80%) showed resistance against colistin with MICs of 8 and 128 μg/ml. The majority (97%) of P. aeruginosa CR strains were considered multidrug resistant (MDR). All K. pneumoniae isolates were resistant to cefepime, cotrimoxazole, ceftriaxone, and imipenem. The clinical CR isolates of P. aeruginosa were highly resistant to ceftriaxone, imipenem, cefepime, cotrimoxazole, ciprofloxacin, amikacin, and piperacillin/tazobactum. The antibiotic resistance pattern was terrifyingly high among both bacterial species. According to the PCR results, CR was prevalent among the gram-negative samples, and the mcr-1 gene was positive in 6/40 (15%) of the CR isolates, including four P. aeruginosa and two K. pneumoniae strains. The high CR (80%) reported in this research is cause for concern and underscores an urgent need to use colistin in a limited and logical manner, similar to other antibiotics.