The quenching of peroxyl radicals by ortho-(alkyltelluro)phenols occurs by a more complex mechanism than formal H-atom transfer. In an effort to improve on this concept, we have prepared (alkyltelluro)resorcinols and bis(alkyltelluro)phenols and evaluated their catalytic chain-breaking and preventive antioxidative properties. The in situ formed trianion produced from 2-bromophenol and 3 equiv of tert-butyllithium was allowed to react with dialkyl ditellurides to provide ortho-(alkyltelluro)phenols in low yields. 2-Bromoresorcinols after treatment with 4 equiv of tert-butyllithium similarly afforded 2-(alkyltelluro)resorcinols. Bis(alkyltelluro)phenols were accessed by allowing the trianion produced from the reaction of 2,6-dibromophenol with 5 equiv of tert-butyllithium to react with dialkyl ditellurides. The novel phenolic compounds were found to inhibit azo-initiated peroxidation of linoleic acid much more efficiently than α-tocopherol in a two-phase peroxidation system containing excess N-acetylcysteine as a stoichiometric thiol reducing agent in the aqueous phase. Whereas most of the (alkyltelluro)phenols and resorcinols could inhibit peroxidation for only 89-228 min, some of the bis(alkyltelluro)phenols were more regenerable and offered protection for >410 min. The novel (alkyltelluro)phenols were also evaluated for their capacity to catalyze reduction of hydrogen peroxide in the presence of thiophenol (glutathione peroxidase-like activity). (Alkyltelluro)resorcinols 7a-c were the most efficient catalysts with activities circa 65 times higher than those recorded for diphenyl diselenide.
Read full abstract