Sugar beets (Beta vulgaris L. cv F58-554H1) were grown hydroponically in a 16-h light, 8-h dark period (photosynthetic photon flux density of 0.5 mmol m-2 s-1) for 4 weeks from sowing in half-strength Hoagland nutrient solution containing 7.5 mM nitrate. Half of the plants were then transferred to 7.5 mM ammonium N; the rest remained in solution with 7.5 mM nitrate N. Upon transfer from nitrate to ammonium, the total N concentration decreased sharply in the fibrous roots and petiole/midribs and increased substantially in the leaf blades. This was because of the decreased nitrate concentrations in fibrous roots and petioles and a concomitant increase in amino acid/amide-N and protein N in leaf blades. Sugar beets acclimated to ammonium partly by a 2.5-fold increase in glutamine synthase activity in fibrous roots and a 1.7-fold increase in leaf blades. Rapid ammonium assimilation into glutamine consumed carbon skeletons, leading to a depletion of foliar starch, sucrose, and maltose. Ammonium treatment stimulated activities of some glycolytic/Krebs cycle enzymes, e.g. pyruvate dehydrogenase. Nitrate-fed leaf blades contained substantially larger concentrations of osmolytes (i.e. nitrate, cations, and sucrose), which may have contributed to the faster rates of leaf expansion in nitrate-fed compared to ammonium-fed plants.