In Corynebacterium glutamicum cells, cdbC, which encodes a protein containing the CysXXCys motif, is regulated by the global redox-responsive regulator OsnR. In this study, we assessed the role of the periplasmic protein CdbC in disulfide bond formation and its involvement in mycomembrane biosynthesis. Purified CdbC efficiently refolded scrambled RNaseA, exhibiting prominent disulfide bond isomerase activity. The transcription of cdbC was decreased in cells grown in the presence of the reductant dithiothreitol (DTT). Moreover, unlike wild-type and cdbC-deleted cells, cdbC-overexpressing (P180-cdbC) cells grown in the presence of DTT exhibited retarded growth, abnormal cell morphology, increased cell surface hydrophobicity and altered mycolic acid composition. P180-cdbC cells cultured in a reducing environment accumulated trehalose monocorynomycolate, indicating mycomembrane deformation. Similarly, a two-hybrid analysis demonstrated the interaction of CdbC with the mycoloyltransferases MytA and MytB. Collectively, our findings suggest that CdbC, a periplasmic disulfide bond isomerase, refolds misfolded MytA and MytB and thereby assists in mycomembrane biosynthesis in cells exposed to oxidative conditions.
Read full abstract