Abstract

In Corynebacterium glutamicum cells, cdbC, which encodes a protein containing the CysXXCys motif, is regulated by the global redox-responsive regulator OsnR. In this study, we assessed the role of the periplasmic protein CdbC in disulfide bond formation and its involvement in mycomembrane biosynthesis. Purified CdbC efficiently refolded scrambled RNaseA, exhibiting prominent disulfide bond isomerase activity. The transcription of cdbC was decreased in cells grown in the presence of the reductant dithiothreitol (DTT). Moreover, unlike wild-type and cdbC-deleted cells, cdbC-overexpressing (P180-cdbC) cells grown in the presence of DTT exhibited retarded growth, abnormal cell morphology, increased cell surface hydrophobicity and altered mycolic acid composition. P180-cdbC cells cultured in a reducing environment accumulated trehalose monocorynomycolate, indicating mycomembrane deformation. Similarly, a two-hybrid analysis demonstrated the interaction of CdbC with the mycoloyltransferases MytA and MytB. Collectively, our findings suggest that CdbC, a periplasmic disulfide bond isomerase, refolds misfolded MytA and MytB and thereby assists in mycomembrane biosynthesis in cells exposed to oxidative conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.