Arsenic (As), one of the major pollutants in the soil, is an important environmental concern as its consumption can cause adverse health symptoms in living organisms. Its contamination of rice grown over As-contaminated areas is a serious concern in South Asian countries. Selenium (Se) has been reported to influence various osmolytes under metal stress in plants. The present study reports the role of Se in mitigating As stress in rice by modulating osmolyte metabolism. Rice plants grown in As-amended soil (2.5-10mgkg-1) in pots were treated with sodium selenate (0.5-1.0mg Se kg-1 soil) in glass house conditions and leaf samples were collected at 60 and 90days after sowing (DAS). As-treated rice leaves displayed a reduction in relative water content (RWC) and dry weight than control with a maximum reduction of 1.68- and 2.47-fold in RWC and 1.95- and 1.69-fold in dry weight in As10 treatment at 60 and 90 DAS, respectively. Free amino acids (1.38-2.26-fold), proline (3.88-3.93-fold), glycine betaine (GB) (1.27-1.72-fold), choline (1.67-3.1-fold), total soluble sugars (1.29-1.61-fold), and reducing sugars (1.67-2.19-fold) increased in As-treated rice leaves as compared to control at both stages. As stress increased the γ-aminobutyric acid (GABA), putrescine content, and glutamate decarboxylase activity whereas diamine oxidase and polyamine oxidase activities declined by 1.69-1.88-fold and 1.52-1.86-fold, respectively. Se alone or in combination with As improved plant growth, RWC, GB, choline, putrescine, and sugars; lowered proline and GABA; and showed a reverse trend of enzyme activities related to their metabolism than respective As treatments. As stress resulted in a higher accumulation of osmolytes to combat its stress which was further modulated by the Se application. Hence, the current investigation suggested the role of osmoprotectants in Se-induced amelioration of As toxicity in rice plants.