Glucagon-like peptide-1 receptor (GLP-1R) agonist treatment has the potential to be a novel therapeutic treatment for Alzheimer’s disease (AD). We previously reported that exendin-4, a Gαs protein-coupled GLP-1R agonist, up-regulates the membrane AMPA receptor GluR1 subunit in the neocortex. However, it is uncertain whether GLP-1R agonists have an advantage as an AD treatment target compared with other Gαs protein-coupled receptors. Here we show that both the protein level of proglucagon, a precursor of GLP-1, and the immunoreactivity level of GLP-1 are significantly decreased in the medial prefrontal cortex (mPFC) of aged mice (14 months old) compared with young (3 weeks old) or adult (6 months old) mice, but not in area CA1, the dentate gyrus (DG) nor in the nucleus of the solitary tract. However, the protein and immunoreactivity levels of GLP-1R in the mPFC, DG and hippocampal CA1 and CA3 areas were preserved in the aged mice. We then confirmed whether the age-dependent decrease in GLP-1 in the mPFC was associated with the activity level or the number of microglial cells in the mPFC. Co-staining of CD11b and GLP-1 in the mPFC revealed that the number of CD11b-positive cells was increased in the aged mice. Moreover, lipopolysaccharide (LPS) injection increased the number of CD11b-positive cells in the mPFC, but the number of GLP-1-positive cells was unchanged. However, the number of CD11b-positive cells that co-localized with GLP-1R in the mPFC is increased by LPS and aging. Because the GLP-1R is preserved in aged mPFC, but the amount of GLP-1 produced in the brain region is diminished, and spatial cognitive memory was impaired in aged mice, we propose that treatment with GLP-1 analogues has great promise for rescuing and ameliorating the age-related mPFC-dependent decline of cognitive functions.
Read full abstract