Rainbow trout (Oncorhynchus mykiss) is traditionally considered as a poor user of digestible carbohydrates harbouring persistent postprandial hyperglycaemia and decreased growth performances when fed a diet containing more than 20% of digestible carbohydrates. While this glucose-intolerant phenotype is well-described in juveniles, evidence points to a particular regulation of glucose metabolism in rainbow trout broodstrocks. By detecting changes in glucose levels and triggering a specific metabolic response, the hypothalamus plays a key role in the regulation of peripheral glucose metabolism. Therefore, our objective was to assess, for the first time in fish, the short-term consequences in hypothalamus, the glucose sensing and feed intake regulation of feeding mature female and male, and neomale rainbow trout with a diet containing either no or a 33% carbohydrate. The hypothalamic glucosensing capacity was assessed through mRNA levels of glucosensing related-genes and feed intake regulation through appetite-regulating peptides. Our data indicate that a brief period of carbohydrate intake (5 meals at 8 °C) did not induce specific changes in glucosensing capacity and appetite-regulating peptides in the hypothalamus of rainbow trout broodstock. Our results did however demonstrate, for the first time in fish, the existence of sex dimorphism of glucosensing-related genes and appetite-regulating peptides.
Read full abstract