Abstract
We aimed to support in vitro the glucosensing capacity observed in vivo in rainbow trout hypothalamus, hindbrain, and Brockmann bodies (BB) and to obtain preliminary evidence of the mechanisms involved. The response of parameters involved in the glucosensing capacity [hexokinase, hexokinase IV (glucokinase), and pyruvate kinase activities and glucose and glycogen levels] was assessed in these tissues incubated for 1 h with 2, 4, or 8 mM D-glucose alone (control) or with specific agonists/inhibitors of the steps involved in glucosensing capacity in mammals. These agents were a competitor for glucose phosphorylation (15 mM mannose), sulfonylurea receptor-1 effectors (500 microM tolbutamide or diazoxide), glycolytic intermediates (15 mM glycerol, lactate, or pyruvate), and inhibitors of glucose transport (10 microM cytochalasin B), glycolysis [20 mM 2-deoxy-D-glucose (2-DG)], and L-type calcium channel (1 microM nifedipine). Control incubations of the three tissues displayed increased glucose and glycogen levels and glucokinase activities in response to increased medium glucose, thus supporting our previous in vivo studies. Furthermore, critical components of the glucosensing mammalian machinery are apparently functioning in the three tissues. The responses in brain regions to all substances tested (except 2-DG and nifedipine) were similar to those observed in mammals, suggesting a similar glucosensing machinery. In contrast, in BB, only the effects of 2-DG, lactate, pyruvate, diazoxide, and nifedipine were similar to those of mammalian beta-cells, suggesting that some of the components of the piscine glucosensing model are different than those of mammals. Such differences may relate to the importance of amino acids rather than glucose signaling in the trout BB.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Regulatory, Integrative and Comparative Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.