Negative energy balance (EB) postpartum is associated with adverse outcomes in dairy cows; therefore, non-invasive biomarkers to measure EB are of particular interest. We determined whether specific metabolites, oxidative stress indicators, enzyme activity, and fatty acid (FA) profiles in milk can serve as indicators of negative EB. Forty-two multiparous Holstein dairy cows were divided at calving into 2 groups: one was milked 3 times daily and the other, twice a day for the first 30 d in milk (DIM). Cows were classified retrospectively as being in either negative EB (NEB, n = 19; the mean EB during the first 21 DIM were less than the overall median of -2.8 Mcal/d), or in positive EB (PEB, n = 21; the mean EB was ≥-2.8 Mcal/d). The daily milk yield, feed intake, and body weight were recorded individually. Blood samples were analyzed for metabolites and stress biomarkers. Milk samples were taken twice weekly from 5 to 45 DIM to analyze the milk solids, the FA profile, glucose, glucose-6-P (G6P), G6P-dehydrogenase (G6PDH) activity, malic and lactic acids, malondialdehyde (MDA), and oxygen radical antioxidant capacity (ORAC). The NEB cows produced 10.5% more milk, and consumed 7.6% less dry matter than the PEB cows. The plasma glucose concentration was greater and β-hydroxybutyrate was lower in the PEB vs. the NEB cows. The average concentrations of milk glucose, G6P, malic and lactic acids, and MDA did not differ between groups; however, the G6PDH activity was higher and ORAC tended to be higher in the milk of NEB vs. the PEB cows. The correlation between milk G6PDH activity and EB was significant (r = -0.39). The percentages of oleic acid and total unsaturated FA in milk were higher for the NEB vs. the PEB cows. These findings indicate that G6PDH activity in milk is associated with NEB and that it can serve as a non-invasive candidate biomarker of NEB in postpartum cows, that should be validated in future studies.
Read full abstract