Antiproliferative and apoptotic activities have been attributed to the phytosteroid diosgenin ((25R)-spirost-5-en-3β-ol; 1). It is known that combining glucose with two rhamnoses (the chacotrioside framework) linked to diosgenin increases its apoptotic activity. However, the effects of diosgenin glucosamine glycosides on different cancer cell types and cell death have not been entirely explored. This study reports the antiproliferative, cytotoxic, and apoptotic activities of diosgenin and its glycosylated derivative ((25R)-spirost-5-en-3β-yl β-D-glucopyranoside; 2). It also explores the effects of two diosgenin glucosamine derivates, diosgenin 2-acetamido-2-deoxy-β-D-glucopyranoside (3), and diosgenin 2-amino-2-deoxy-β-D-glucopyranoside hydrochloride (4), on different cancer cell lines. We found that all the compounds affected proliferative activity with minimal toxicity. In addition, all cancer cell lines showed morphological and biochemical characteristics corresponding to an apoptotic process. Apoptotic cell death was higher in all cell lines treated with compounds 2, 3 and 4 than in those treated with diosgenin. Moreover, compounds 3 and 4 induced apoptosis better than compounds 1 and 2. These results suggest that combining glucosamine with modified glucosamine attached to diosgenin has a greater apoptotic effect than diosgenin or its glycosylated derivative (compound 2). Furthermore, diosgenin and the abovementioned glycosides had a selective effect on tumour cells since the proliferative capacity of human lymphocytes, keratinocytes (HaCaT) and epithelial cells (CCD841) was not significantly affected. Altogether, these results demonstrate that diosgenin glucosamine compounds exert an antiproliferative effect on cancer cell lines and induce apoptotic effects more efficiently than diosgenin alone without affecting non-tumour cells. This study evidences the pro-apoptotic and selective activities of diosgenyl glucosamine compounds in cancer cell lines.
Read full abstract