The advent of long-term implants has increased the urgent need for self-powered biomedical devices. Utilize enzymes to expedite the process of biofuel oxidation. These systems frequently make use of glucose oxidase. A possible solution involves glucose biofuel cells powered by the glucose found in physiological fluids. Biocompatible substances like carbon electrode designs help to transport electrons from the biological reactions to the external circuit as efficiently as possible while maximizing surface area. Despite advances in implantable electrodes, developing miniaturized and flexible electrodes remains challenging. In this work, a metal-coated flexible carbon thread and foam bioelectrode are fabricated and successfully implanted inside a living and freely moving rat. These electrodes are prepared using gold nanostructures as electron enhancers, a negatively charged conducting polymer, a biocompatible redox mediator, and enzymes as biocatalysts. The carbon foam-based enzymatic biofuel cell produces in vitro and in vivo settings, generates a power density of 165 µW/cm2 and 285 µW/cm2, and the carbon thread-based fuel cell produces a power density of 98 µW/cm2 and 180 µW/cm2 in vitro and in vivo environments, respectively. This work paves the way for the possible use of inexpensive electrodes for subdermal implantable microsystems.
Read full abstract