This study used a symmetric, three-dimensional, physical model of the larynx called M6 in which the transverse plane of the glottis is formed by sinusoidal arcs for each medial vocal fold surface, creating a maximum glottal width of 0.16 cm at the location of the minimal glottal area. Three glottal angles were studied: convergent 10 degrees, uniform (0 degrees), and divergent 10 degrees. Fourteen pressure taps were incorporated in the upstream-downstream direction on the vocal fold surface at three coronal locations, at the one-fourth, one-half, and three-fourths distances in the anterior-posterior direction of the glottis. The computational software FLUENT was used to compare and augment the data for these cases. Near the glottal entrance, the pressures were similar across the three locations for the uniform case; however, for the convergent case the middle pressure distribution was lower by 4% of the transglottal pressure, and lower by about 2% for the divergent case. Also, there were significant secondary velocities toward the center from both the anterior commissure and vocal process regions (of as much as approximately 10% of the axial velocities). Thus, the three dimensionality created relatively small pressure gradients and significant secondary velocities anteriorly-posteriorly within the glottis.