Antibiotic-resistant genes (ARGs) pose a significant threat to the global food transformation system. The increasing prevalence of ARGs in food has elicited apprehension about public health safety. The widespread dissemination of ARGs in food products, driven by the inappropriate use of antibiotics, presents significant adversity for the safety of emerging future food sources such as edible insects. As the world faces increasing challenges related to food security, climate change, and antibiotic resistance, edible insects offer a sustainable and resilient food source. The intriguing possibility of edible insects serving as a less conducive environment for ARGs compared to livestock warrants further exploration and investigation. In this recent work, we listed ARGs from edible insects detected so far by in vitro approaches and aimed to construct a fair comparison with ARGs from livestock based on relevant genes. We also presented our argument by analyzing the factors that might be responsible for ARG abundance in livestock vs. edible insects. Livestock and edible insects have diverse gut microbiota, and their diets differ with antibiotics. Consequently, their ARG abundance may vary as well. In addition, processed edible insects have lower levels of ARGs than raw ones. We hypothesize that edible insects could potentially contain a lower abundance of ARGs and exhibit a diminished ability to disseminate ARGs relative to livestock. A regulatory framework could help intercept the increasing prevalence of ARGs. Due diligence should also be taken when marketing edible insects for consumption.