Transcription factors containing DNA binding domains generally regulate transcription by direct interaction with DNA. For most transcription factors, including the fungal Zn(II)2Cys6 zinc binuclear cluster transcription factors, the DNA binding motif is essential for function. However, Aspergillus nidulans TamA and the related Saccharomyces cerevisiae Dal81p protein contain Zn(II)2Cys6 motifs shown to be dispensable for function. TamA acts at several promoters as a coactivator of the global nitrogen GATA transcription factor AreA. We now show that TamA is the major transcriptional activator of gdhA, encoding the key nitrogen metabolism enzyme NADP-glutamate dehydrogenase. Moreover, activation of gdhA by TamA occurs primarily by a mechanism requiring the TamA DNA binding motif. We show that the TamA DNA binding motif is required for DNA binding of FLAG-epitope-tagged TamA to the gdhA promoter. We identify a conserved promoter element required for TamA activation, and show that TamA and AreA are reciprocally required for full binding at the gdhA promoter under conditions where AreA is inactive at most promoters but active at gdhA. Therefore TamA has dual functions as a DNA-binding transcription factor and a non-DNA-binding coactivator. Dual DNA-binding and coactivator functions provide an additional level of combinatorial control to mediate gene-specific expression.
Read full abstract