Abstract In this paper, well-posedness and global boundary exponential stabilization problems are studied for the one-dimensional linearized Korteweg-de Vries equation (KdV) with state delay, which is posed in bounded interval $[0,2\pi ]$ and actuated at the left boundary by Dirichlet condition. Based on the infinite-dimensional backstepping method for the delay-free case, a linear Volterra-type integral transformation maps the system into another homogeneous target system, and an explicit feedback control law is obtained. Under this feedback, we prove the well-posedness of the considered system in an appropriate Banach space and its exponential stabilization in the topology of $L^{2}(0,2\pi )$-norm by the use of an appropriate Lyapunov–Razumikhin functional. Moreover, under the same feedback law, we get the local exponential stability for the non-linear KdV equation. A numerical example is provided to illustrate the result.