This study introduces a novel method for time- and space-dependent system reliability analysis, integrating an active learning surrogate model with an innovative parallel updating strategy. A global Kriging model is developed to represent the signs of random samples using efficient global optimization. From a Bayesian perspective, the prediction probabilities of random sample signs within the time-space domain are calculated, and the sample with the lowest prediction probability is chosen to update the global Kriging model. The system extremum for each sample in the time-space domain is determined, and the corresponding random variables, time-space coordinates, and failure modes are selected. To further decrease iteration times, a parallel updating strategy that considers both the predicted probability and the correlation among candidate samples is proposed. Additionally, a new stopping criterion is introduced to balance accuracy and efficiency, terminating the updating process appropriately. The method's accuracy and efficiency are validated through three examples.
Read full abstract