For a large class of operators of the form <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">[F(\cdot)+A],</tex> in which <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">A</tex> is a not necessarily nonsingular real <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n \times n</tex> matrix, and <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">F(\cdot)</tex> is a diagonal strictly monotone-increasing mapping of the set of all real <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n</tex> vectors <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">E^{n}</tex> onto an open subset of <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">E^{n}</tex> , we give necessary and sufficient conditions under which <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">F(\cdot)+A]</tex> possesses a global inverse on <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">E^{n}</tex> . Operators of the type <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">[F(\cdot)+A]</tex> frequently arise in the analysis of nonlinear networks and are encountered in other areas as well. In particular, for <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">A</tex> the short-circuit conductance matrix of a resistance network, and <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">F(x)</tex> the transpose of <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">(f_{1}(x_{1}), f_{2}(x_{2}), \cdots , f_{n}(x_{n}))</tex> for all <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">x \in E^{n}</tex> in which the <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">f_{j}(\cdot)</tex> are the usual exponential diode functions, we give a complete solution to the problem of determining whether or not <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">[F(\cdot)+A]</tex> possesses an inverse on <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">E^{n}</tex> .