Modern echocardiographic techniques, i.e. tissue Doppler imaging and speckle tracking echocardiography, allow for an assessment of global and regional right ventricular function. The right ventricular myocardial performance index and tricuspid annulus motion are used in the assessment of global right ventricular function, whereas duration of the cardiac cycle phases and myocardial velocities are used in the assessment of regional function. Strain and strain rate allow for an evaluation of both regional and global myocardial function. Literature reports provide data on the usefulness of these methods in patients with pressure and volume overload as well as with direct myocardial damage involving the right ventricle. In pulmonary hypertension, S’ wave assessment may be used for therapeutic efficacy evaluation. Longitudinal strain reduction indicates an increased risk of vascular events, while an increased value of myocardial performance index is a predictor for a survival in pulmonary hypertension. A decreased S’ wave velocity is associated with limited pulmonary vascular flow in patients with pulmonary embolism. In patients after atrial baffle repair for transposition of the great arteries, decreased longitudinal strain was an independent predictor for heart failure. A statistically significant decrease in both the S’ wave as well as acceleration during isovolumic contraction were observed in arrhythmogenic right ventricular cardiomyopathy. S’ wave and global right ventricular longitudinal strain values were lower in patients in the acute phase of myocardial infarction involving the right ventricle compared to the corresponding parameters in healthy individuals. In the case of tetralogy of Fallot correction, the evaluation of S’ wave velocity may prove useful in identifying patients with reduced cardiac systolic reserve; a good correlation was also found between the global right ventricular longitudinal strain and right ventricular ejection fraction in MRI.