We consider non-isentropic Euler-Maxwell equations with relaxation times (small physical parameters) arising in the models of magnetized plasma and semiconductors. For smooth periodic initial data sufficiently close to constant steady-states, we prove the uniformly global existence of smooth solutions with respect to the parameter, and the solutions converge global-in-time to the solutions of the energy-transport equations in a slow time scaling as the relaxation time goes to zero. We also establish error estimates between the smooth periodic solutions of the non-isentropic Euler-Maxwell equations and those of energy-transport equations. The proof is based on stream function techniques and the classical energy method but with some new developments.
Read full abstract