Abstract
We consider non-isentropic Euler-Maxwell equations with relaxation times (small physical parameters) arising in the models of magnetized plasma and semiconductors. For smooth periodic initial data sufficiently close to constant steady-states, we prove the uniformly global existence of smooth solutions with respect to the parameter, and the solutions converge global-in-time to the solutions of the energy-transport equations in a slow time scaling as the relaxation time goes to zero. We also establish error estimates between the smooth periodic solutions of the non-isentropic Euler-Maxwell equations and those of energy-transport equations. The proof is based on stream function techniques and the classical energy method but with some new developments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.