We propose a novel density estimation method using both the k-nearest neighbor (KNN) graph and the potential field of the data points to capture the local and global data distribution information respectively. The clustering is performed based on the computed density values. A forest of trees is built using each data point as the tree node. And the clusters are formed according to the trees in the forest. The new clustering method is evaluated by comparing with three popular clustering methods, K-means++, Mean Shift and DBSCAN. Experiments on two synthetic data sets and one real data set show that our approach can effectively improve the clustering results.
Read full abstract