BackgroundAtrophied lesion volume (aLV), a proposed biomarker of disability progression in multiple sclerosis (MS) and transition into progressive MS (PMS), depicts chronic periventricular white matter (WM) pathology. Meningeal infiltrates, imaged as leptomeningeal contrast enhancement (LMCE), are linked with greater cortical pathology. ObjectivesTo determine the relationship between serum-derived proteomic data with the development of aLV and LMCE in a heterogeneous group of people with MS (pwMS). MethodsProteomic and MRI data for 202 pwMS (148 clinically isolated syndrome /relapsing-remitting MS and 54 progressive MS (PMS)) were acquired at baseline and at 5.4-year follow-up. The concentrations of 21 proteins related to multiple MS pathophysiology pathways were derived using a custom-developed Proximity Extension Assay on the Olink™ platform. The accrual of aLV was determined as the volume of baseline T2-weighted lesions that were replaced by cerebrospinal fluid over the follow-up. Regression models and age-adjusted analysis of covariance (ANCOVA) were used. ResultsOlder age (standardized beta = 0.176, p = 0.022), higher glial fibrillary acidic protein (standardized beta = 0.312, p = 0.001), and lower myelin oligodendrocyte glycoprotein levels (standardized beta = −0.271, p = 0.002) were associated with accrual of aLV over follow-up. This relationship was driven by the pwPMS population. The presence of LMCE at the follow-up visit was not predicted by any baseline proteomic biomarker nor cross-sectionally associated with any protein concentration. ConclusionProteomic markers of glial activation are associated with chronic lesional WM pathology (measured as aLV) and may be specific to the progressive MS phenotype. LMCE presence in MS does not appear to relate to proteomic measures.