Abstract

Nerve injury is an important reason of human disability and death. We studied the role of histone deacetylation in the response of the dorsal root ganglion (DRG) cells to sciatic nerve transection. Sciatic nerve transection in the rat thigh induced overexpression of histone deacetylase 1 (HDAC1) in the ipsilateral DRG at 1-4h after axotomy. In the DRG neurons, HDAC1 initially upregulated at 1h but then redistributed from the nuclei to the cytoplasm at 4h after axotomy. Histone H3 was deacetylated at 24h after axotomy. Deacetylation of histone H4, accumulation of amyloid precursor protein, a nerve injury marker, and GAP-43, an axon regeneration marker, were observed in the axotomized DRG on day 7. Neuronal injury occurred on day 7 after axotomy along with apoptosis of DRG cells, which were mostly the satellite glial cells remote from the site of sciatic nerve transection. Administration of sodium valproate significantly reduced apoptosis not only in the injured ipsilateral DRG but also in the contralateral ganglion. It also reduced the deacetylation of histones H3 and H4, prevented axotomy-induced accumulation of amyloid precursor protein, which indicated nerve injury, and overexpressed GAP-43, a nerve regeneration marker, in the axotomized DRG. Therefore, HDAC1 was involved in the axotomy-induced injury of DRG neurons and glial cells. HDAC inhibitor sodium valproate demonstrated the neuroprotective activity in the axotomized DRG.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.