The widespread use of reinforced concrete continues to face challenges, particularly in mitigating alkali-silica reaction (ASR), due to its detrimental effects on concrete strength and durability. This paper investigates the effectiveness of using binary supplementary cementitious materials (SCMs) in mitigating ASR by incorporating metakaolin (MK) and waste glass powder (GP) as partial replacements for cement. Additionally, the potential of a new cement product, "NewCem Plus" (NCM), along with the use of basalt fibers and lithium, was evaluated through a 14-day accelerated mortar bar test following the ASTM C1260. This study also assessed concrete's properties such as its compressive strength and workability using the flow test. The results indicated that MK was effective, reducing expansion by 79%, 84%, and 88% with 10%, 20%, and 30% cement replacement, respectively, compared to the control mixture. On the other hand, GP showed a more modest reduction in expansion, with 10%, 20%, and 30% replacement levels reducing expansion by 20%, 43%, and 75%, respectively. Furthermore, the addition of lithium to MK significantly mitigated ASR, reducing expansion below the ASTM threshold. However, mixtures containing NewCem Plus, lithium, and basalt fibers showed minimal impact on ASR reduction. These findings underscore the viability of using binary or ternary blends of SCMs to mitigate ASR in concrete, encouraging their adoption in future concrete applications.
Read full abstract