High-level radioactive liquid waste (HLW) is immobilized in a glass matrix through a process called vitrification. In this process, HLW and glass-forming oxides are combined in a pre-determined ratio within a glass melter to produce a vitrified waste form. The properties of this waste form, including its ability to accommodate different radioactive isotopes, depend on the composition of the base glass.In the present study, multi-component amorphous borosilicate-based glasses (SiO2-B2O3-Na2O-TiO2-Fe2O3-CaO-K2O) in bead form (diameter 2–3 mm) were developed. The elemental composition of the glass beads (GBs) was analyzed using an optical emission spectrometer. Additionally, the GBs underwent various physico-chemical analyses, including functional group identification, thermal, electrical, and mechanical properties, as well as viscosity and chemical durability assessments, to identify the optimal glass compositions. The influence of Na2O on the pouring temperature was also examined. Crushing strength and attrition rate measurements were conducted to confirm the suitability of GBs for remote feeding into the melter. The GBs developed in the study are unique, with significant potential for worldwide use in vitrification facilities, particularly in continuous vitrification systems employing Joule Heated Ceramic Melter (JHCM) technology.
Read full abstract