The Rottnest Shelf is a narrow, wave-dominated open shelf on the passive continental margin of southwest Australia, adjacent to a hinterland of low relief and sluggish drainage. High physical energy, low nutrients in cool subtropical waters, and rapid postglacial transgression have limited carbonate productivity, restricted grain types, and reworked the transgressed surface to form only a thin (< 1 m) blanket of carbonate and relict sediment, with little terrigenous influx. Subaerial weathering of the shelf during Late Pleistocene emergence was followed by postglacial drowning, erosional shoreface retreat, and generation of a transgressive lag deposit. Establishment of the warm temperate biota, dominated by bryozoans and calcareous red algae, resulted in bioerosion of the shelf disconformity surface and generation of hardground veneers and thin skeletal carbonate sheets. Linear topographic ridges of Pleistocene limestone partition the shelf into systems with varying physical energy, biota and sediment supply. The Holocene sediments are a shallowing-upward coastal sequence; wave-ripple cross-stratified grainstone (Inner Shelf); and bioturbated bryozoan grainstone to skeletal wackestone (Outer Shelf to Upper Continental Slope), characterised by seaward fining and increasing percentages of planktic carbonate sediment. Given sufficient time, the Rottnest Shelf could recover from drowning, and form blanket-like skeletal carbonates. Thin (< 1 m) lags overlying disconformities, which underlie shallowing-upward coastal and shelf sediments a few metres thick, will be generated by glacio-eustatic cycles of sedimentation (10 5 y duration). Thick (several tens of metres) sediment bodies, composed of wave-rippled to bioturbated skeletal carbonate sediment with a temperate biota, will be formed during longer term (1–10 My) sedimentation cycles. Such cycles have characterised passive margins during the Cenozoic. The Rottnest Shelf thus provides a facies model for temperate shelf sedimentation along passive continental margins.
Read full abstract