Summary The Tibetan Plateau, a critical region influencing both local and global atmospheric circulation, climate dynamics, hydrology, and terrestrial ecosystems, is undergoing climate-driven changes, including glacial retreat, permafrost thaw, and groundwater changes. Despite its importance, implementing continuous and systematic observations have been challenging due to the area’s high altitude and extreme climate conditions. In this context, seismic interferometry emerges as a cost-effective method for the continuous monitoring of subsurface structural changes driven by environmental factors and internal geophysical processes. We investigate subsurface evolution using four years of seismic data from nine stations on the northeastern Tibetan Plateau, by applying coda wave interferometry across multiple frequency bands. Our findings highlight seismic velocity changes within the frequency bands 5–10 Hz, 0.77–1.54 Hz, and 0.25–0.51 Hz, revealing depth-dependent seasonal and long-term changes. Near-surface and deeper strata exhibit similar seasonal patterns, with velocities increasing in winter and decreasing in summer driven by changes in hydrological processes, while intermediate ice-water phase strata show contrasting behavior due to thermal elastic strain. Long-term trends suggest that the upper subsurface layer is affected by melting water and precipitation originating from Kunlun Mountains, whereas deeper layer reflect groundwater level variations influenced by climate change and human activities. This study provides insights into the environmental evolution of the Tibetan Plateau and its impact on managing local groundwater resources.
Read full abstract