Ginseng (Panax ginseng) is an herb with a long history and a wide range of applications. Ginsenoside is one of the most representative and active ginseng compounds, with various pharmacological effects. Therefore, the development of bioreactors using methyl jasmonate (MeJA) as an inducer for targeted ginsenoside production is of great commercial value. Combined with transcriptomic research tools, screenings to obtain candidate genes involved in ginsenoside biosynthesis are crucial for future discoveries about the molecular mechanism of MeJA-regulated ginsenoside biosynthesis. In our study, the ginsenoside content of ginseng adventitious roots treated with MeJA at different times was analyzed. Transcriptome analysis was performed to investigate the effects of MeJA on changes in ginsenoside content in ginseng adventitious roots. The MeJA could significantly increase changes in the content of pro-ginsenodiol ginsenosides as well as pro-triol ginsenosides Rg3, Re, and Rf in ginseng adventitious roots. Differential gene expression analysis showed that a total of 14,009 differentially expressed genes were obtained from the screening of the present study. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that differentially expressed genes were mainly enriched under GO terms in response to stimuli, metabolic processes, and the regulation of biological processes, with significant annotation to the metabolic terms of terpenoids and polyketides. Two expression modules of genes highly related to ginsenoside biosynthesis were obtained via WGCNA. Our study provides a reference system for the targeted ginsenoside production using MeJA as an inducer, and also provides genetic and gene resources for subsequently validating genes related to the regulation of ginsenoside biosynthesis using weighted gene co-expression network analysis (WGCNA).
Read full abstract