As a key phenolic pigment concentrated in the surface tissues of leaves, flavonoids (Flav) are the major bioactive ingredients in Ginkgo leaf extracts. Flav are also marked natural antioxidants and significant indicators of biotic and abiotic stresses, critical for determining cultivation quality and enhancing Flav yield. In particular, area-based Flav (Flavarea) is related to the shortwave-blue light interaction within leaves per unit leaf area, whereas mass-based Flav (Flavmass) is useful for the quantitative assessment of Flav yield. In order to accurately estimate the contents of Flavarea and Flavmass in leaves of Ginkgo plantations, in this study, we developed an advanced bidirectional reflectance factor (BRF) spectra-based approach by reducing the effects of specular reflection and enhancing the absorption signals of Flav (in the shortwave-blue region of spectrum), using a suite of new spectral indices (SIs) (i.e., flavonoid index (FI), modified flavonoid index (mFI) and double difference index (DD)) calculated from the leaf clip equipped spectrometers-collected data. The results demonstrated that most of the SIs derived from the developed BRF spectra-based approach obtained relatively high performance for Flav estimation by alleviating adverse effects of specular reflection to different extents (CV-R2 = 0.60–0.76). In specific, DDnir434,421 selected from DD-type indices performed (CV-R2 = 0.76 for Flavarea; CV-R2 = 0.69 for Flavmass) better than other indices. These findings represent marked potentials of the developed BRF spectra-based approach for non-destructively estimating leaf Flav content, as well as improving the understanding of the mechanisms of specular effects on Flav estimations in leaves of Ginkgo plantations.