This paper proposes an algorithm to improve the correlation between giga-hertz transverse electromagnetic (GTEM) cell and open area test site (OATS). It is based on the dipole modeling process of an unknown source object in a GTEM cell and on the evaluation of the approximate far field equations correlated with measured GTEM powers at output port of the GTEM cell. In this algorithm, the relative phase differences between dipole moments play an important part in modeling the test object as a set of dipoles and offer stable calculation of emission values. The radiated emission test using this algorithm requires fifteen orientations of equipment under test, but the increased orientations as compared with the previous method have little effect on the time needed for testing. Radiation from a notebook computer has been tested for statistical analysis of the correlation between GTEM data and OATS data. The emission test results of the notebook computer show that the mean, the standard deviation, and the correlation coefficient are −0.62, 1.99, and +0.85, respectively. These figures indicate that this algorithm provides improved accuracy in the measurement of electromagnetic emissions over the previous method.
Read full abstract