The scale of urbanization in China during the past three decades is unprecedented in human history, and the processes are poorly understood. Here we present an effort to map the urban land expansion processes of 32 major cities in China from 1978 to 2010 using Landsat satellite data to understand the temporal and spatial characteristics. Results showed that the urban extent of the 32 cities expanded exponentially with very high annual rates varying from 3.2% to 12.8%. Temporal fluctuation in urban expansion rates in these 32 cities was obvious, with unexpected and alarming expansion rates from 2005 to 2010 that drastically exceeded their expectation, which was calculated from the long-term trend between 1978 and 2005, by 45%. Overall, we found that the growth rates of cities during the entire study period were inversely related to city size, contradicting the theory or Gibrat's law, which states that the growth rate is independent of city size. More detailed analysis indicated that city growth in China has transitioned from contradicting to conforming to Gibrat's law since 1995. Our study suggests that the urban expansion theory (i.e., Gibrat's law) does not fit Chinese expansion consistently over time, and the exact causes are unknown. Exploring the causes in future research will improve our understanding of the theory and, more importantly, understand the feasibility of the theoretical relationship between city size and expansion rate in guiding contemporary urban expansion planning.