The realization of spontaneous ferroelectricity down to the one-dimensional (1D) limit is both fundamentally intriguing and practically appealing for high-density ferroelectric and nonlinear photonics. However, the 1D vdW ferroelectric materials are not discovered experimentally yet. Here, the first 1D vdW ferroelectric compound NbOI3 with a high Curie temperature TC>450K and giant second harmonic generation (SHG) is reported. The 1D crystalline chain structure of the NbOI3 is revealed by cryo-electron microscopy, whereas the 1D ferroelectric order originated from the Nb displacement along the Nb-O chain (b-axis) is confirmed via obvious electrical and ferroelectric hysteresis loops. Impressively, NbOI3 exhibits a giant SHG susceptibility up to 1572pmV-1 at a fundamental wavelength of 810nm, and a further enhanced SHG susceptibility of 5582pmV-1 under the applied hydrostatic pressure of 2.06GPa. Combing in situ pressure-dependent X-ray diffraction, Raman spectra measurements, and first-principles calculations, it is demonstrated that the O atoms shift along the Nb─O atomic chain under compression, which can lead to the increased Baur distortion of [NbO2I4] octahedra, and hence induces the enhancement of SHG. This work provides a 1D vdW ferroelectric system for developing novel ferroelectronic and photonic devices.