Mas-allatotropin (Mas-AT) and Lom-accessory gland-myotropin I (Lom-AG-MTI) are two members of a conserved family of insect neuropeptides, collectively termed allatotropins, which have diverse functions, ranging from stimulation of juvenile hormone secretion to myotropic effects on heart and hindgut. In addition, allatotropins appear to be abundant within the nervous system, suggesting neuroactive roles. To identify neurons in the insect brain suitable for a neurophysiological analysis of the roles of allatotropins, we used antisera against Mas-AT and Lom-AG-MTI to map allatotropin-immunoreactive neurons in the brain of a suitable insect, the locust Schistocerca gregaria. Both antisera revealed basically identical staining patterns throughout the locust brain with more than 12,500 immunostained interneurons per brain hemisphere. Neurosecretory cells were not labeled, and the retrocerebral complex was devoid of immunostaining. Prominent immunoreactive cell types include about 9,600 lamina monopolar neurons, medulla to lobula interneurons, local neurons of the antennal lobe, a giant interneuron of the mushroom body, projection neurons of the glomerular lobe to the mushroom body, and three systems of tangential neurons of the central complex. Several groups of neurons showed colocalization of Mas-AT- and gamma-aminobutyric acid immunostaining. Mass spectrometric analysis identified a peptide with a molecular mass identical to Lom-AG-MTI in all major parts of the locust brain but not in the retrocerebral complex. This study strongly suggests that Lom-AG-MTI is highly abundant in the locust brain, and is likely to play a neuroactive role in many brain circuits including all stages of sensory processing, learning and memory, and higher levels of motor control.
Read full abstract