Frequency-sextupled microwave signal generation based on dual-polarization modulation using an electro-optic dual-parallel polarization modulator (DPPolM) without an optical filter is proposed. From a theoretical analysis, the frequency-sextupled microwave signal can be obtained by properly adjusting the polarization directions of the modulated optical signals, the powers and the phases of the microwave drive signals applied to the DPPolM. Simulation results show that a 24 GHz microwave signal with an optical sideband suppression ratio (OSSR) exceeding 31 dB and a radio frequency spurious suppression ratio (RFSSR) higher than 25 dB is generated from a 4 GHz microwave drive signal, which match well with the theoretical analysis. Furthermore, it is also proved to be valid that even if the microwave drive voltage, the phase difference, and the polarization direction of light wave deviate from the ideal values to a certain degree, the performance of the generated frequency-sextupled microwave signal is still acceptable.
Read full abstract