Magnetic pair creation $\gamma \to e^+e^-$ has been at the core of radio pulsar paradigms and central to polar cap models of gamma-ray pulsars for over three decades. The Fermi gamma-ray pulsar population now exceeds 140 sources and has defined an important part of Fermi's science legacy. Among the population characteristics well established is the common occurrence of exponential turnovers in their spectra in the 1--10 GeV range. These turnovers are too gradual to arise from magnetic pair creation in the strong magnetic fields of pulsar inner magnetospheres. By demanding insignificant photon attenuation precipitated by such single-photon pair creation, the energies of these turnovers for Fermi pulsars can be used to compute lower bounds for the typical altitude of GeV band emission. This paper explores such pair transparency constraints below the turnover energy, and updates earlier altitude bound determinations of that have been deployed in various Fermi pulsar papers. For low altitude emission locales, general relativistic influences are found to be important. Rotational aberration influences are also explored, and are found to be small at low altitudes, except near the magnetic pole. The altitude bounds are typically in the range of 2-7 stellar radii for the young Fermi pulsar population, and provide key information on the emission altitude in radio quiet pulsars that do not possess double-peaked pulse profiles. The bound for the Crab pulsar is at a much higher altitude, with the putative detection by MAGIC out to 350-400 GeV implying a lower bound of 310km to the emission region, i.e., approximately 20% of the light cylinder radius. These results are also extended to the super-critical field domain, where it is found that emission in magnetars originating below around 10 stellar radii will not appear in the Fermi-LAT band.