Number of mobile devices such as Smartphones or Tablet PCs has been dramatically increased over the recent years. New mobile devices are equipped with integrated cameras and large displays that make the interaction with the device easier and more efficient. Although most of the previous works on interaction between humans and mobile devices are based on 2D touch-screen displays, camera-based interaction opens a new way to manipulate in 3D space behind the device in the camera's field of view. In this paper, our gestural interaction relies on particular patterns from local orientation of the image called rotational symmetries. This approach is based on finding the most suitable pattern from a large set of rotational symmetries of different orders that ensures a reliable detector for fingertips and user's gesture. Consequently, gesture detection and tracking can be used as an efficient tool for 3D manipulation in various virtual/augmented reality applications.
Read full abstract