Ants are one of the most ecologically and evolutionarily successful groups of animals and exhibit a remarkable degree of phenotypic diversity. This success is largely attributed to the fact that all ants are eusocial and live in colonies with a reproductive division of labor between morphologically distinct queen and worker castes. Yet, despite over a century of studies on caste determination and evolution in ants, we lack a complete ontogenetic series from egg to adult for any ant species. We, therefore, present a developmental table for the Pharaoh ant Monomorium pharaonis, a species whose colonies simultaneously produce reproductive queens and completely sterile workers. In total, M. pharaonis embryonic, larval, and pupal development lasts 45 days. During embryogenesis, the majority of developmental events are conserved between M. pharaonis and the fruit fly Drosophila melanogaster. We discovered, however, two types of same-stage embryos before gastrulation: (1) embryos with internalized germ cells; and (2) embryos with germ cells outside of the blastoderm at the posterior pole. Moreover, we also found two-types of embryos following germ band extension: (1) embryos with primordial germ cells that will develop into reproductive queens; and (2) embryos with no germ cells that will develop into completely sterile workers. Together, these data show that queen and worker castes are already determined and differentiated by early embryogenesis. During larval development, we confirmed that reproductive and worker larvae proceed through three larval instars. Using anatomical and developmental markers, we can further discern the development of gyne (unmated queen) larvae, male larvae, and worker larvae as early as the 1st instar. Overall, we hope that the ontogenetic series we present here will serve as a blueprint for the generation of future ant developmental tables.
Read full abstract