Capacity calculations are essential for the long-term planning of railway infrastructure. Many of the methods currently used in practice calculate characteristic capacity values separately for the single elements (mainly lines and nodes) of a railway network. Approaches that consider the entire network to account for interactions between the elements often rely on many assumptions, which renders a direct practical application difficult. This paper therefore introduces a linear optimization model that comprises railway-specific constraints such as minimum headway times, line capacities, and route conflicts. Under the consideration of these constraints, the developed model permits the calculation of a network-wide capacity. The model is validated on a sample network that is based on a real network of the German railway infrastructure.
Read full abstract