Geothermal energy could play a pivotal role in decarbonisation as it can provide clean, constant base-load energy which is weather independent. With a growing demand for clean energy and improved energy security, geothermal resources must be quantified to reduce exploration risk. This study aims to quantify the untapped resource-potential of the Cornubian Batholith as a geothermal resource for power generation and direct heat use. Recent field work, laboratory measurements and petrophysical characterization provides a newly compiled dataset which is inclusive of subsurface samples taken from the production well of the United Downs Deep Geothermal Power Project. Deterministic and probabilistic calculations are undertaken to evaluate the: total heat in place, recoverable resource, technical potential and potential carbon savings. The Cornubian Batholith is considered a petrothermal system which may require stimulation as an enhanced geothermal system. This study shows the batholith has significant heat stored of 8988 EJ (P50), corresponding to 366 EJ recoverable and a technical potential of 556 GWth. When evaluating the potential for power generation (i.e., electricity) the P50 is 31 GWe. The total carbon savings when generating electricity (P50) equates to 106 Mt.