Soil biological characteristics are highly sensitive to land use changes, making them valuable indicators of soil quality. This study assesses the effects of three land use types (agriculture, rangeland, and forest) and elevation variations on soil microbial parameters and their spatial distribution in the Khaneghah region. Standard physicochemical and biological properties of the soil were measured on a total of 72 soil samples collected using systematic and random sampling techniques. Spatial distribution maps of the biological indices were generated using geostatistical techniques, specifically the Kriging method, within a geographic information system (GIS). The results revealed significantly higher values for microbial biomass carbon (MBC = 900 mg Cmic-CO2 kg-1), nitrogen (MBN = 8.97 mg Nmic kg-1), basal respiration (BR = 25.1 mg C-CO2 g-1 day-1), and the total microbial population (MPN = 0.63 × 109 cells g-1) in forest soils compared to rangeland and agricultural soils. The alignment between land use maps and biological index maps reinforced these findings. Although the correlations between biological indices and physicochemical properties were generally weak (positive or negative), organic matter content, field capacity moisture, and silt percentage exhibited a slight positive correlation with most of the microbial indices evaluated. The comparison of soil microbial indices with the digital elevation model map indicated higher levels of MBC, MBN, BR, and MPN at elevated regions. However, the microbial quotient and metabolic quotient (qCO₂) did not show significant changes with increasing elevation. The study also confirmed the effectiveness of Kriging interpolation in mapping specific soil microbial indices, as the correlation between Kriging estimates and measured values at sampling points exceeded 0.2, demonstrating statistical significance at a 5% confidence level.
Read full abstract