Abstract
Mineral extraction plays a key role in the global raw materials supply chain, however the exhaustion of shallow deposits and typical scarcity of sampled data during exploration activities creates challenges in mine planning and design, where decision-making is highly sensitive to uncertainty in geology and mineral grade prediction. Geostatistical techniques are commonly used to generate a set of equiprobable simulated numerical models to capture these uncertainties, however incorporating these simulated models within a mine planning and design framework remains a major challenge. The purpose of this paper is to propose a novel approach to decision-making in underground mine design that can use information from an ensemble of numerical realizations of a mineral resource to improve the financial performance of the asset. A deep reinforcement learning (DRL) framework, using the proximal policy optimization (PPO) algorithm, is developed for the design of underground mining production level layouts. A case study is presented using a gold mineral resource characterized by an ensemble of 100 numerical realizations to verify the advantages of the proposed method, considering a baseline consisting of an industry standard automated design method. The DRL approach achieved an 8.3% higher expected profit, a 3.4% more gold mined than the baseline, and has the added functionality of considering uncertainty in mineral grades.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Engineering Applications of Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.