The presence of considerable amounts of hazardous elements in air may represent prolonged lethal effects for the residential and/or commercial campuses and activities, especially those around the emission activities, hence it is so important to monitor and anticipate these concentrations and design an effective spatial forecasting models for that sake. Geographic information systems GIS were utilized to monitor, analyze and model the presence and concentrations for airborne Pb, Cr, and Zn elements in the atmosphere around certain industrial campuses at the northern part of Iraq. Diffusion patterns were determined for these elements via the adaptation of GIS extension; the geostatistical and spatial analysis that implement Kriging and inverse distance weighted (IDW) methods to interpolate a raster surface. The main determination factors like wind speed, ambient temperature and topographic distributions were considered in order to design a prediction model that serves as early alert of future possible accidents. Results of eight months observation program have proved that the concentrations of the three elements had significantly exceeded the Iraqi and WHO limits at most of the observed locations especially for summer times. Also, the predicted models were validated with the field measures and have proved close match especially for the geostatistical analysis map that had around 4% percentage error for the three tested elements.
Read full abstract