Background and objective: Nanoparticles present properties that can be applied to a wide range of fields such as biomedicine, electronics or optics. The type of properties depends on several characteristics, being some of them related with the particle structure. A proper characterization of nanoparticles is crucial since it could affect their applications. To characterize a particle shape and size, the nanotechnologists employ Electron Microscopy (EM) to obtain images of nanoparticles and perform measures over them. This task could be tedious, repetitive and slow, we present a Deep Learning method based on Convolutional Neural Networks (CNNs) to detect, segment, infer orientations and reconstruct microscope images of nanoparticles. Since machine learning algorithms depend on annotated data and there is a lack of annotated datasets of nanoparticles, our work makes use of artificial datasets of images resembling real nanoparticles photographs.Methods: Our work is divided into three tasks. Firstly, a method to create annotated datasets of artificial images resembling Scanning Electron Microscope (SEM). Secondly, two models of convolutional neural networks are trained using the artificial datasets previously generated, the first one is in charge of the detection and segmentation of the nanoparticles while the second one will infer the nanoparticle orientation. Finally, the 3D reconstruction module will recreate in a 3D scene the set of detected particles.Results: We have tested our method with five different shapes of basic nanoparticles: spheres, cubes, ellipsoids, hexagonal discs and octahedrons. An analysis of the reconstructions was conducted by manually comparing each of them with the real images. The results obtained have been promising, the particles are segmented and reconstructed accordingly to their shapes and orientations.Conclusions: We have developed a method for nanoparticle detection and segmentation in microscope images. Moreover, we can also infer an approximation of the 3D orientation of the particles and, in conjunction with the detections, create a 3D reconstruction of the photographs. The novelty of our approximation lies in the dataset used. Instead of using annotated images, we have created the datasets simulating the microscope images by using basic geometrical objects that imitate real nanoparticles.