The authors aim to study the gamma-rays and neutron beam shielding capabilities of zinc bismuth borate glasses doped with erbium ions. Mass attenuation coefficient (MAC) (μ/ρ) values were computed employing XCOM and two different simulation codes, MCNP5 and Geant4, within 0.015–15 MeV photon energy, which showed good agreement within the derived values. The effective atomic number (Zeff), electron density (Ne), half-value layer (HVL) and mean free path (MFP) values were derived using MAC values. To account on the scattering effects of photons from the samples, exposure buildup factor (EBF) were determined, applying geometric progression (G-P) method, within 0.015–15 MeV photon energy and penetration depth of 1–40 mfp (intervals: 1, 5, 10, 15, and 40 mfp). The high MAC, Zeff values and low HVL, MFP values of 16.93B2O3‒22.57ZnO‒60Bi2O3‒0.5Er2O3 (mol%) glass optimized its shielding effects against gamma-rays. The macroscopic effective removal cross-section for fast neutron (ΣR) values lie within the range of 0.1142–0.1232 cm−1 for the selected Er2O3-doped samples. The studied parameters of the experimented glasses revealed their dominant radiation shielding features compared to commercial shielding glasses, concretes, and alloys.