Stress-induced corrosion impairs the mechanical integrity of magnesium (Mg) and its alloys as potential orthopedic implants. Although there has been extensive work reporting the effects of stress on Mg corrosion in vitro, the geometric design principles of the Mg-based orthopedic devices still remain largely unknown. In this work, a numerical simulation model mimicking fractured bone fixation and surgical animal models were applied to investigate the effects of the geometric design of Mg screws on the stress distribution and the stress-induced degradation behavior. Finite element (FE) analysis was used for calculation of stress concentrations around the Mg screws, with different thread type, thread pitch, and thread width. Afterward, the Mg screws of the pre-optimization and post-optimization groups exhibiting the highest and lowest stress concentrations, respectively, were implanted in the fractured distal femora and back subcutaneous tissue of rabbits. Encouragingly, there was a significant difference between the pre-optimization and the post-optimization groups in the degradation rate of the stressed screw parts located around the fracture line. Interestingly, there was no significant difference between the two groups in the degradation rate of the non-stressed screw parts. Consistently, the Mg screw post-optimization exhibited a significantly lower degradation rate than that pre-optimization in the back subcutaneous implantation model, which generated stress in the whole screw body. The alteration in geometric design did not affect the corrosion rate of the Mg screws in an immersion test without load applied. Importantly, an accelerated new bone formation with less fibrous encapsulation around the screws was observed in the Mg group post-optimization relative to the Mg group pre-optimization and the poly (lactic acid) group. Geometry optimization may be a promising strategy to reduce stress-induced corrosion in Mg-based orthopedic devices. Statement of significanceStress concentrations influence corrosion characteristics of magnesium (Mg)-based implants. The geometric design parameters, including thread type, thread pitch, and thread width of the Mg screws, were optimized through finite element analysis to reduce stress concentrations in a fractured model. The Mg screws with triangular thread type, 2.25 mm pitch, and 0.3 mm thread width, exhibiting the lowest maximum von Mises stress, showed a significant decrease in the volume loss relative to the Mg screws pre-optimization. Compared with the Mg screw pre-optimization and the poly(lactic acid) screw, the Mg screw post-optimization favored new bone formation while inhibiting fibrous encapsulation. Collectively, optimization in the geometric design is a promising approach to reduce stress-induced corrosion in Mg-based implants.