The design of a conventional zoom lens is always challenging because it requires not only sophisticated optical design strategy, but also complex and precise mechanical structures for system adjustment. Here, we propose a continuous-zoom lens consisting of two chiral geometric metasurfaces with dielectric nanobrick arrays sitting on a transparent substrate. The metalens can continuously vary the focal length by rotating either of the two metasurfaces around its optical axis without changing any other conditions. Due to the polarization dependence of the geometric metasurface, the positive and negative polarities are interchangeable in one identical metalens only by changing the handedness of the incident circularly polarized light, which can generate varying focal lengths ranging from −∞ to +∞ in principle.
Read full abstract